Menu
Menu
19 Harley St, London, W1G 9QJ, UK
We are London's Top Spine Clinic

Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). – PubMed

[ad_1]

Due to a policy of no release, oil sands process-affected water (OSPW), produced by the surface-mining oil sands industry in North Eastern Alberta, Canada, is stored on-site in tailings ponds. Currently, ozonation is considered one possible method for remediation of OSPW by reducing the concentrations of dissolved organic compounds, including naphthenic acids (NAs), which are considered the primary toxic constituents. However, further work was needed to evaluate the effectiveness of ozonation in reducing the toxicity of OSPW and to ensure that ozonation does not increase the toxicity of OSPW. This study examined effects of untreated, ozone-treated, and activated charcoal-treated OSPW (OSPW, O3-OSPW, and AC-OSPW) on the early life stage (ELS) of fathead minnow (Pimephales promelas). Success of hatching of eggs, spontaneous movement, and incidences of hemorrhage, pericardial edema, and malformation of the spine of embryos were examined. To elucidate the mechanism of toxicity, concentrations of reactive oxygen species (ROS) were measured, and the abundances of transcripts of genes involved in biotransformation of xenobiotics, response to oxidative stress, and apoptosis were quantified by real-time PCR. Compared to the control group, which had an embryo survival rate of 97.9 ± 2.08%, survival was significantly less when exposed to OSPW (43.8 ± 7.12%). Eggs exposed to untreated OSPW exhibited a significantly greater rate of premature hatching, and embryos exhibited greater spontaneous movement. Incidences of hemorrhage (50.0 ± 3.40%), pericardial edema (56.3 ± 7.12%), and malformation of the spine (37.5 ± 5.38%) were significantly greater in embryos exposed to OSPW compared to controls. These effects are typical of exposure to dioxin-like compounds, however, abundance of transcripts of cyp1a was not significantly greater in embryos exposed to OSPW. Significantly greater concentrations of ROS, and greater abundances of transcripts cyp3a, gst, sod, casp9, and apopen compared to controls, indicated that exposure to OSPW caused oxidative stress, which can result in damage to mitochondria and promote activation of caspase enzymes and apoptotic cell death. Removal of dissolved organic constituents by ozone treatment, or by activated charcoal, significantly attenuated all of the adverse effects associated with untreated OSPW. The results suggest that the organic fraction of OSPW can negatively impact the development of fathead minnow embryos through oxidative stress and apoptosis, and that ozonation attenuates this developmental toxicity.

[ad_2]

Source link

Share to care...

Share on facebook
Facebook
Share on twitter
Twitter
Share on pinterest
Pinterest
Share on google
Google+
Share on linkedin
LinkedIn
Share on skype
Skype

What we do...

The Harley Street Hospital

Testimonials

What is London spine unit and How it Works

The London Spine Unit was established in 2005 and has successfully treated over 5000 patients. All conditions are treated.

We treat all spinal disorders

The London Spine Unit specialises in Minimally Invasive Treatments allowing rapid recovery and return to normal function

Trusted by patients worldwide

The London Spine Unit provides the highest quality care to all patients and has VIP services for those seeking exceptional services

What our patients say about us ......