19 Harley St, London, W1G 9QJ, UK

The anti-inflammatory effect of electroacupuncture in mice with spinal cord injury and molecular mechanism based on transcriptome sequencing technology – Lumbar Spinal Stenosis

The article investigated the effects of electroacupuncture (EA) on neural function and spinal cord pathology in mice with spinal cord injury (SCI). The study used bioinformatics to explore the anti-inflammatory molecular mechanism of EA on SCI mice. In the experiment, EA was applied to specific acupuncture points in the mice for 10 minutes daily for 14 days. The results showed that EA improved hindlimb locomotor function and reduced histopathological changes in the spinal cord. RNA sequencing revealed differential gene expression between the groups, with 15 genes identified as being down-regulated by EA. These genes were associated with inflammatory factors and were enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway and adipocytokine signaling pathway. The study concluded that EA promotes nerve function repair and improves inflammatory infiltration in SCI mice by down-regulating inflammatory factors and regulating these signaling pathways

Summarised by Mr Mo Akmal – Lead Spinal Surgeon
The London Spine Unit : innovative day surgery spinal centre on Harley Street UK

Published article

CONCLUSION: EA can promote the repair of nerve function and improve inflammatory infiltration in SCI mice. The mechanism may be closely related to the down-regulation of inflammatory factors Fabp4, Adipoq and Pck1 expression, and the regulation of PPAR and Adipocytokine signaling pathways.

Lumbar Decompression Surgery Expert. Best Spinal Surgeon UK
Zhen Ci Yan Jiu. 2023 Jul 25;48(7):672-80. doi: 10.13702/j.1000-0607.20220620.ABSTRACTOBJECTIVE: To observe the effect of electroacupuncture(EA) on neural function and spinal cord pathological morphology in spinal cord injury(SCI) mice and investigate the anti-inflammatory molecular mechanism of EA on SCI mice from the aspects of gene by using bioinformatics.METHODS: Seventy-two female C57BL/6 mice were randomized into sham,

Zhen Ci Yan Jiu. 2023 Jul 25;48(7):672-80. doi: 10.13702/j.1000-0607.20220620.

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture(EA) on neural function and spinal cord pathological morphology in spinal cord injury(SCI) mice and investigate the anti-inflammatory molecular mechanism of EA on SCI mice from the aspects of gene by using bioinformatics.

METHODS: Seventy-two female C57BL/6 mice were randomized into sham operation, model and EA groups, with 24 mice in each group. The SCI model was established by clamping the spinal cord with a serrefine after laminectomy at the 1st lumbar vertebra(L1). EA(1.5 Hz/7.5 Hz, 1.0 mA) was applied to bilateral “Jiaji”(EX-B2) and “Zusanli”(ST36) for 10 min, once a day for 14 consecutive days. Basso Mouse Scale(BMS) score was used to assess the hindlimb locomotor function of mice. Histopathological changes of the injured area of the spinal cord were determined by HE staining. The spinal cord RNA was sequenced by using RNA-Seq technology. The bioinformatic analysis was then performed to detect the diffe-rential genes between groups, and the function classification and the involved pathways were enriched. The mRNA and protein expressions of differential genes were detected and verified by using qRT-PCR and Western blot.

RESULTS: Compared with the sham operation group, BMS score of the model group was significantly decreased(P<0.05), while that of EA group was increased relevant to the model group (P<0.05). HE staining showed loose and disordered structure and arrangement, cavitation, more inflammatory infiltration, nucleus pycnosis, and neuronal necrosis in the model group, which was alleviated in the EA group. Compared with the sham operation group, 565 differential genes were detected in the model group, including 545 up-regulated and 20 down-regulated, while 41 were detected between the EA and the model group, including 2 up-regulated and 39 down-regulated in the EA group. Fifteen genes that were all up-regulated after modeling and down-regulated after EA intervention were detected by using Venn plot, which are Retn, Adipoq, Myh1, Actn2, Pck1, Klhl41, Fabp4, Hspb7, Myot, Ankrd2, Hrc, Cox6a2, Obscn, Col2a1, Mybpc1, and 3 inflammation-related genes(Fabp4, Adipoq and Pck1) were finally acquired. The 15 differential genes were annotated into main biological processes, cell composition and molecular function in the GO function classification analysis. The 15 differential genes were then enriched into different KEGG pathways, including the peroxisome proliferatorsactivated receptor (PPAR) signaling pathway, Adipocytokine signaling pathway. The mRNA and protein expressions of Fabp4, Adipoq and Pck1 in spinal cord detected by qRT-PCR and Western blot were significantly increased in the model group (P<0.001, P<0.01), while these were significantly decreased in the EA group relevant to the model group(P<0.001, P<0.01, P<0.05).

CONCLUSION: EA can promote the repair of nerve function and improve inflammatory infiltration in SCI mice. The mechanism may be closely related to the down-regulation of inflammatory factors Fabp4, Adipoq and Pck1 expression, and the regulation of PPAR and Adipocytokine signaling pathways.

PMID:37518961 | DOI:10.13702/j.1000-0607.20220620

The London Spine Unit : innovative day surgery spinal centre on Harley Street UK

Read the original publication:

The anti-inflammatory effect of electroacupuncture in mice with spinal cord injury and molecular mechanism based on transcriptome sequencing technology

Related Posts

0/5 (0 Reviews)

Trusindex Reviews

London Spine Unit Harley Street Hospital

A Focus on High Quality Specialised Care

We are a specialist Private Hospital based on Harley Street, London UK The Harley Street Hospital, Day Surgery Hospital

We provide exclusive health services for individuals seeking Advanced medical, non-surgical or minimally invasive treatments. We are covered by All Insurance Companies apart from AXA PPP

Our Medical Director and Lead Spinal Surgeon Mr Mo Akmal MD is a world renowned Spine Specialist Consultant with over 20 years of experience. He and his team have developed revolutionary techniques to perform all types of Spinal Surgery as a Day Case procedure without traditional General Anaesthetic.

We are constantly improving our techniques for treatment and improving facilities for our patients.

Book your Appointment Now 
Check out our Reviews 
Check out our Patient Videos 
Check our Mr Akmal’s Profile

 

What our patients say ...

Zhen Ci Yan Jiu. 2023 Jul 25;48(7):672-80. doi: 10.13702/j.1000-0607.20220620.ABSTRACTOBJECTIVE: To observe the effect of electroacupuncture(EA) on neural function and spinal cord pathological morphology in spinal cord injury(SCI) mice and investigate the anti-inflammatory molecular mechanism of EA on SCI mice from the aspects of gene by using bioinformatics.METHODS: Seventy-two female C57BL/6 mice were randomized into sham
Spinal Stenosis Symptoms

Revolutionary Keyhole surgical technique to vaporise bulging discs

Dr Mo Akmal Medical Director
Dr Mo Akmal MD - Lead Spinal Surgeon

Laser Disc Surgery can be performed under local anaesthetic at The Harley Street Hospital.

Initial Consultation

with Consultant Spine Surgeon
£ 250
  • No Waiting Times
  • Top NHS affiliated Consultant
  • Includes Clinical Review and Report
  • Multidisciplinary discussion
  • Review of Previous Scans and Reports

Follow up Consultation

any appointment after initial consultation
£ 180
  • Top NHS affiliated Consultant
  • Includes Clinical Review and Report
  • Multidisciplinary discussion

High Resolution MRI Scan

any Single Region (3.0 Tesla)
£ 600
  • No waiting times
  • Includes Full Radiologist Report
  • Open or Closed MRI scan types
  • Copy of Scan on CD

Website Offer

Pre-Booked Online
£1130
£ 800
  • Initial Consultation
  • MRI Scan (Single Region)
  • Follow Up consultation
  • Same Day One Stop Visit
  • Full Medical and MRI scan Report
  • Copy of scan on CD
Popular

If you have any emergency Doctor’s need, simply call our 24 hour emergency

Your personal case manager will ensure that you receive the best possible care.

Call Now 

+44 844 589 2020
+44 203 973 8810