Lumbar Decompression

By Jaimig Aljorna

Lumbar Decompression – Back and leg pain appears when there is pressure on a nerve root in the lower spine, (nerve root compression). Lumbar decompression is a surgical technique that allows solving this problem successfully. What is lumbar decompression? Basically, lumbar decompression enables the surgeon to reach the lumbar spine through a little incision in…

Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases.

By London Spine
Related Articles

Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases.

J Neurosurg Spine. 2012 Dec;17(6):530-9

Authors: Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS

Abstract
OBJECT: Traditional procedures for correction of sagittal imbalance via shortening of the posterior column include the Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. These procedures require wide exposure of the spinal column posteriorly, and may be associated with significant morbidity. Anterior longitudinal ligament (ALL) release using the minimally invasive lateral retroperitoneal approach with a resultant net lengthening of the anterior column has been performed as an alternative to increase lordosis. The objective of this study was to demonstrate the feasibility and early clinical experience of ALL release through a minimally invasive lateral retroperitoneal transpsoas approach, as well as to describe its surgical anatomy in the lumbar spine.
METHODS: Forty-eight lumbar levels were dissected in 12 fresh-frozen cadaveric specimens to study the anatomy of the ALL as well as its surrounding structures, and to determine the feasibility of the technique. The lumbar disc spaces and ALL were accessed via the lateral transpsoas approach and confirmed with fluoroscopy in each specimen. As an adjunct, 4 clinical cases of ALL release through the minimally invasive lateral retroperitoneal transpsoas approach were reviewed. Operative technique, results, complications, and early outcomes were assessed.
RESULTS: In the cadaveric study, sectioning of the ALL proved to be feasible from the minimally invasive lateral retroperitoneal transpsoas approach. The structures at most immediate risk during this procedure were the aorta, inferior vena cava, iliac vessels, and sympathetic plexus. The mean increase in segmental lumbar lordosis per level of ALL release was 10.2°, while global lumbar lordosis improved by 25°. Each level of ALL release took 56 minutes and produced 40 ml of blood loss on average. Visual analog scale and Oswestry Disability Index scores improved by 9 and 35 points, respectively. There were no cases of hardware failure, and as of yet no complications to report.
CONCLUSIONS: This initial experience suggests that ALL release through the minimally invasive lateral retroperitoneal transpsoas approach may be feasible, allows for improvement of lumbar lordosis without the need of an open laparotomy/thoracotomy, and minimizes the tissue disruption and morbidity associated with posterior osteotomies.

PMID: 23020211 [PubMed – indexed for MEDLINE]

Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers.

By London Spine
Related Articles

Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers.

J Neurosurg Spine. 2012 Nov;17(5):476-85

Authors: Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AW, Cornwall GB, Akbarnia BA

Abstract
OBJECT: In the surgical treatment of spinal deformities, the importance of restoring lumbar lordosis is well recognized. Smith-Petersen osteotomies (SPOs) yield approximately 10° of lordosis per level, whereas pedicle subtraction osteotomies result in as much as 30° increased lumbar lordosis. Recently, selective release of the anterior longitudinal ligament (ALL) and placement of lordotic interbody grafts using the minimally invasive lateral retroperitoneal transpsoas approach (XLIF) has been performed as an attempt to increase lumbar lordosis while avoiding the morbidity of osteotomy. The objective of the present study was to measure the effect of the selective release of the ALL and varying degrees of lordotic implants placed using the XLIF approach on segmental lumbar lordosis in cadaveric specimens between L-1 and L-5.
METHODS: Nine adult fresh-frozen cadaveric specimens were placed in the lateral decubitus position. Lateral radiographs were obtained at baseline and after 4 interventions at each level as follows: 1) placement of a standard 10° lordotic cage, 2) ALL release and placement of a 10° lordotic cage, 3) ALL release and placement of a 20° lordotic cage, and 4) ALL release and placement of a 30° lordotic cage. All four cages were implanted sequentially at each interbody level between L-1 and L-5. Before and after each intervention, segmental lumbar lordosis was measured in all specimens at each interbody level between L-1 and L-5 using the Cobb method on lateral radiography.
RESULTS: The mean baseline segmental lordotic angles at L1-2, L2-3, L3-4, and L4-5 were -3.8°, 3.8°, 7.8°, and 22.6°, respectively. The mean lumbar lordosis was 29.4°. Compared with baseline, the mean postimplantation increase in segmental lordosis in all levels combined was 0.9° in Intervention 1 (10° cage without ALL release); 4.1° in Intervention 2 (ALL release with 10° cage); 9.5° in Intervention 3 (ALL release with 20° cage); and 11.6° in Intervention 4 (ALL release with 30° cage). Foraminal height in the same sequence of conditions increased by 6.3%, 4.6%, 8.8% and 10.4%, respectively, while central disc height increased by 16.1%, 22.3%, 52.0% and 66.7%, respectively. Following ALL release and placement of lordotic cages at all 4 lumbar levels, the average global lumbar lordosis increase from preoperative lordosis was 3.2° using 10° cages, 12.0° using 20° cages, and 20.3° using 30° cages. Global lumbar lordosis with the cages at 4 levels exhibited a negative correlation with preoperative global lordosis (10°, R = -0.756; 20°, -0.730; and 30°, R = -0.437).
CONCLUSIONS: Combined ALL release and placement of increasingly lordotic lateral interbody cages leads to progressive gains in segmental lordosis in the lumbar spine. Mean global lumbar lordosis similarly increased with increasingly lordotic cages, although the effect with a single cage could not be evaluated. Greater global lordosis was achieved with smaller preoperative lordosis. The mean maximum increase in segmental lordosis of 11.6° followed ALL release and placement of the 30° cage.

PMID: 22938554 [PubMed – indexed for MEDLINE]