Menu
Menu
19 Harley St, London, W1G 9QJ, UK
We are London's Top Spine Clinic

Ethanol-mediated compaction and cross-linking enhance mechanical properties and degradation resistance while maintaining cytocompatibility of a nucleus pulposus scaffold.

Icon for Wiley Related Articles

Ethanol-mediated compaction and cross-linking enhance mechanical properties and degradation resistance while maintaining cytocompatibility of a nucleus pulposus scaffold.

J Biomed Mater Res B Appl Biomater. 2019 Feb 15;:

Authors: Walters JD, Gill SS, Mercuri JJ

Abstract
Intervertebral disc degeneration is a complex, cell-mediated process originating in the nucleus pulposus (NP) and is associated with extracellular matrix catabolism leading to disc height loss and impaired spine kinematics. Previously, we developed an acellular bovine NP (ABNP) for NP replacement that emulated human NP matrix composition and supported cell seeding; however, its mechanical properties were lower than those reported for human NP. To address this, we investigated ethanol-mediated compaction and cross-linking to enhance the ABNP’s dynamic mechanical properties and degradation resistance while maintaining its cytocompatibility. First, volumetric and mechanical effects of compaction only were confirmed by evaluating scaffolds after various immersion times in buffered 28% ethanol. It was found that compaction reached equilibrium at ~30% compaction after 45?min, and dynamic mechanical properties significantly increased 2-6× after 120?min of submersion. This was incorporated into a cross-linking treatment, through which scaffolds were subjected to 120?min precompaction in buffered 28% ethanol prior to carbodiimide cross-linking. Their dynamic mechanical properties were evaluated before and after accelerated degradation by ADAMTS-5 or MMP-13. Cytocompatibility was determined by seeding stem cells onto scaffolds and evaluating viability through metabolic activity and fluorescent staining. Compacted and cross-linked scaffolds showed significant increases in DMA properties without detrimentally altering their cytocompatibility, and these mechanical gains were maintained following enzymatic exposure. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res B Part B, 2019.

PMID: 30767383 [PubMed – as supplied by publisher]

Share to care...

Share on facebook
Facebook
Share on twitter
Twitter
Share on pinterest
Pinterest
Share on google
Google+
Share on linkedin
LinkedIn
Share on skype
Skype

What we do...

The Harley Street Hospital

Testimonials

What is London spine unit and How it Works

The London Spine Unit was established in 2005 and has successfully treated over 5000 patients. All conditions are treated.

We treat all spinal disorders

The London Spine Unit specialises in Minimally Invasive Treatments allowing rapid recovery and return to normal function

Trusted by patients worldwide

The London Spine Unit provides the highest quality care to all patients and has VIP services for those seeking exceptional services

What our patients say about us ......

Cervical Epidural

I was really impressed by the diagnosis and treatment that I received. My condition has been considerably improved. John W. You May Also Like:Disc replacement

Read More »

Radicular leg pain

I have been very well treated except on one occasion I was kept waiting 1 hour for an appointment. Terry D. You May Also Like:Acute

Read More »