19 Harley St, London, W1G 9QJ, UK

Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis – Lumbar Fusion

Day Case Lumbar Fusion Surgery

This article discusses a study that aimed to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces complications associated with prolonged anesthesia and placement in the prone position. The study utilized a three-dimensional finite element model to simulate human spine movement and compare the biomechanical stability of different fixation techniques. The results showed that both lateral rod screw (LRS) and mini-LP fixation provided adequate stability for two-level OLIF, with the mini-LP model demonstrating superior installation convenience. Overall, the study concluded that both LRS and mini-LP fixation are effective options for two-level OLIF

Summarised by Mr Mo Akmal – Lead Spinal Surgeon
The London Spine Unit : best recognised day surgery unit on Harley Street UK

Published article

CONCLUSION: Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.

Lumbar Fusion Surgery Expert. Best Spinal Surgeon UK
Front Med (Lausanne). 2023 Jun 23;10:1183683. doi: 10.3389/fmed.2023.1183683. eCollection 2023.ABSTRACTOBJECTIVE: The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated,

Front Med (Lausanne). 2023 Jun 23;10:1183683. doi: 10.3389/fmed.2023.1183683. eCollection 2023.

ABSTRACT

OBJECTIVE: The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position.

METHODS: A three-dimensional nonlinear finite element (FE) model of an intact L1-L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2-L3 and L3-L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots.

RESULTS: When compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1-L2, L4-L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious.

CONCLUSION: Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.

PMID:37457575 | PMC:PMC10345158 | DOI:10.3389/fmed.2023.1183683

The London Spine Unit : best recognised day surgery unit on Harley Street UK

Read the original publication:

Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis

Related Posts

0/5 (0 Reviews)

Trusindex Reviews

London Spine Unit Harley Street Hospital

A Focus on High Quality Specialised Care

We are a specialist Private Hospital based on Harley Street, London UK The Harley Street Hospital, Day Surgery Hospital

We provide exclusive health services for individuals seeking Advanced medical, non-surgical or minimally invasive treatments. We are covered by All Insurance Companies apart from AXA PPP

Our Medical Director and Lead Spinal Surgeon Mr Mo Akmal MD is a world renowned Spine Specialist Consultant with over 20 years of experience. He and his team have developed revolutionary techniques to perform all types of Spinal Surgery as a Day Case procedure without traditional General Anaesthetic.

We are constantly improving our techniques for treatment and improving facilities for our patients.

Book your Appointment Now 
Check out our Reviews 
Check out our Patient Videos 
Check our Mr Akmal’s Profile

 

What our patients say ...

Front Med (Lausanne). 2023 Jun 23;10:1183683. doi: 10.3389/fmed.2023.1183683. eCollection 2023.ABSTRACTOBJECTIVE: The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated

Revolutionary Keyhole surgical technique to vaporise bulging discs

Dr Mo Akmal Medical Director
Dr Mo Akmal MD - Lead Spinal Surgeon

Laser Disc Surgery can be performed under local anaesthetic at The Harley Street Hospital.

Initial Consultation

with Consultant Spine Surgeon
£ 250
  • No Waiting Times
  • Top NHS affiliated Consultant
  • Includes Clinical Review and Report
  • Multidisciplinary discussion
  • Review of Previous Scans and Reports

Follow up Consultation

any appointment after initial consultation
£ 180
  • Top NHS affiliated Consultant
  • Includes Clinical Review and Report
  • Multidisciplinary discussion

High Resolution MRI Scan

any Single Region (3.0 Tesla)
£ 600
  • No waiting times
  • Includes Full Radiologist Report
  • Open or Closed MRI scan types
  • Copy of Scan on CD

Website Offer

Pre-Booked Online
£1130
£ 800
  • Initial Consultation
  • MRI Scan (Single Region)
  • Follow Up consultation
  • Same Day One Stop Visit
  • Full Medical and MRI scan Report
  • Copy of scan on CD
Popular

If you have any emergency Doctor’s need, simply call our 24 hour emergency

Your personal case manager will ensure that you receive the best possible care.

Call Now 

+44 844 589 2020
+44 203 973 8810