19 Harley St, London, W1G 9QJ, UK

Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments

OBJECT: Both posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) have been frequently undertaken for lumbar arthrodesis. These procedures use different approaches and cage designs, each of which could affect spine stability, even after the addition of posterior pedicle screw fixation. The objectives of this biomechanical study were to compare PLIF and TLIF, each accompanied by bilateral pedicle screw fixation, with regard to the stability of the fused and adjacent segments. METHODS: Fourteen human L2-S2 cadaveric spine specimens were tested for 6 different modes of motion: flexion, extension, right and left lateral bending, and right and left axial rotation using a load control protocol (LCP). The LCP for each mode of motion utilized moments up to 8.0 Nm at a rate of 0.5 Nm/second with the application of a constant compression follower preload of 400 N. All 14 specimens were tested in the intact state. The specimens were then divided equally into PLIF and TLIF conditions. In the PLIF Group, a bilateral L4-5 partial facetectomy was followed by discectomy and a single-level fusion procedure. In the TLIF Group, a unilateral L4-5 complete facetectomy was performed (and followed by the discectomy and single-level fusion procedure). In the TLIF Group, the implants were initially positioned inside the disc space posteriorly (TLIF-P) and the specimens were tested; the implants were then positioned anteriorly (TLIF-A) and the specimens were retested. All specimens were evaluated at the reconstructed and adjacent segments for range of motion (ROM) and at the adjacent segments for intradiscal pressure (IDP), and laminar strain. RESULTS: At the reconstructed segment, both the PLIF and the TLIF specimens had significantly lower ROMs compared with those for the intact state (p < 0.05). For lateral bending, the PLIF resulted in a marked decrease in ROM that was statistically significantly greater than that found after TLIF (p < 0.05). In flexion-extension and rotation, the PLIF Group also had less ROM, however, unlike the difference in lateral bending ROM, these differences in ROM values were not statistically significant. Variations in the position of the implants within the disc space were not associated with any significant differences in ROM values (p = 0.43). Analyses of ROM at the adjacent levels L2-3, L3-4, and L5-S1 showed that ROM was increased to some degree in all directions. When compared with that of intact specimens, the ROMs were increased to a statistically significant degree at all adjacent segments in flexion-extension loads (p < 0.05); however, the differences in values among the various operative procedures were not statistically significant. The IDP and facet contact force for the adjacent L3-4 and L5-S1 levels were also increased, but these values were not statistically significantly increased from those for the intact spine (p > 0.05). CONCLUSIONS: Regarding stability, PLIF provides a higher immediate stability compared with that of TLIF, especially in lateral bending. Based on our findings, however, PLIF and TLIF, each with posterolateral fusions, have similar biomechanical properties regarding ROM, IDP, and laminar strain at the adjacent segments

Keywords : Arthrodesis,Biomechanical Phenomena,Bone Screws,Cadaver,California,etiology,Humans,Joint Instability,Lumbar Vertebrae,methods,Motion,physiology,Pressure,Range of Motion,Articular,Rotation,Spinal Fusion,Spine,surgery,, Comparison,Singlelevel,Posterior,Versus, harley street mri

Date of Publication : 2010 Jun

Authors : Sim HB;Murovic JA;Cho BY;Lim TJ;Park J;

Organisation : Department of Neurological Surgery, Stanford University Medical Center, Stanford, California 94305-5327, USA

Journal of Publication : J Neurosurg Spine

Pubmed Link : https://www.ncbi.nlm.nih.gov/pubmed/20515358

The London Spine Unit : Harley Street UK. Specialists in Cutting Edge Technologies for Spinal Surgery

Make an Appointment 

Trustpilot Reviews
Doctify Reviews
Top Doctor Reviews

Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation segmental stability and the effects on adjacent motion segments | Best physiotherapy for frozen shoulder

What our patients say ...

Consultant Spine Surgeon
Consultant Spine Surgeon
Consultant Spine Surgeon

This surgical technique consists of a percutaneous approach for the treatment of small to medium size hernias of the intervertebral disc by laser energy. The main objective is to reduce the intradiscal pressure in the nucleus pulposus

Laser Disc Surgery can be performed under local anaesthetic as a day case at our centre on the prestigious Harley Street.
What is London spine unit and How it Works

The London Spine Unit was established in 2005 and has successfully treated over 5000 patients. All conditions are treated.

treatment of all spinal disorders

The London Spine Unit specialises in Minimally Invasive Treatments allowing rapid recovery and return to normal function

Trusted by patients worldwide

The London Spine Unit provides the highest quality care to all patients and has VIP services for those seeking exceptional services

If you have any emergency Doctor’s need, simply call our 24 hour emergency

Your personal case manager will ensure that you receive the best possible care.

Call Now 

+44 844 589 2020
+44 203 973 8810