Menu
Menu
19 Harley St, London, W1G 9QJ, UK
We are London's Top Spine Clinic

Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors.

Related Articles

Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors.

Mol Pain. 2012;8:42

Authors: Ito A, Takeda M, Yoshimura T, Komatsu T, Ohno T, Kuriyama H, Matsuda A, Yoshimura M

Abstract
BACKGROUND: The polypeptide hormone calcitonin is clinically well known for its ability to relieve neuropathic pain such as spinal canal stenosis, diabetic neuropathy and complex regional pain syndrome. Mechanisms for its analgesic effect, however, remain unclear. Here we investigated the mechanism of anti-hyperalgesic action of calcitonin in a neuropathic pain model in rats.
RESULTS: Subcutaneous injection of elcatonin, a synthetic derivative of eel calcitonin, relieved hyperalgesia induced by chronic constriction injury (CCI). Real-time reverse transcriptase-polymerase chain reaction analysis revealed that the CCI provoked the upregulation of tetrodotoxin (TTX)-sensitive Nav.1.3 mRNA and downregulation of TTX-resistant Nav1.8 and Nav1.9 mRNA on the ipsilateral dorsal root ganglion (DRG), which would consequently increase the excitability of peripheral nerves. These changes were reversed by elcatonin. In addition, the gene expression of the calcitonin receptor and binding site of 125I-calcitonin was increased at the constricted peripheral nerve tissue but not at the DRG. The anti-hyperalgesic effect and normalization of sodium channel mRNA by elcatonin was parallel to the change of the calcitonin receptor expression. Elcatonin, however, did not affect the sensitivity of nociception or gene expression of sodium channel, while it suppressed calcitonin receptor mRNA under normal conditions.
CONCLUSIONS: These results suggest that the anti-hyperalgesic action of calcitonin on CCI rats could be attributable to the normalization of the sodium channel expression, which might be exerted by an unknown signal produced at the peripheral nerve tissue but not by DRG neurons through the activation of the calcitonin receptor. Calcitonin signals were silent in the normal condition and nerve injury may be one of triggers for conversion of a silent to an active signal.

PMID: 22676202 [PubMed – in process]

Share to care...

Share on facebook
Facebook
Share on twitter
Twitter
Share on pinterest
Pinterest
Share on google
Google+
Share on linkedin
LinkedIn
Share on skype
Skype

What we do...

The Harley Street Hospital

Testimonials

What is London spine unit and How it Works

The London Spine Unit was established in 2005 and has successfully treated over 5000 patients. All conditions are treated.

We treat all spinal disorders

The London Spine Unit specialises in Minimally Invasive Treatments allowing rapid recovery and return to normal function

Trusted by patients worldwide

The London Spine Unit provides the highest quality care to all patients and has VIP services for those seeking exceptional services

What our patients say about us ......